124 research outputs found

    Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney

    Get PDF
    Inflammation is accompanied by the release of highly reactive oxygen and nitrogen species (RONS) that damage DNA, among other cellular molecules. Base excision repair (BER) is initiated by DNA glycosylases and is crucial in repairing RONS-induced DNA damage; the alkyladenine DNA glycosylase (Aag/Mpg) excises several DNA base lesions induced by the inflammation-associated RONS release that accompanies ischemia reperfusion (I/R). Using mouse I/R models we demonstrate that Aag[superscript −/−] mice are significantly protected against, rather than sensitized to, I/R injury, and that such protection is observed across three different organs. Following I/R in liver, kidney, and brain, Aag[superscript −/−] mice display decreased hepatocyte death, cerebral infarction, and renal injury relative to wild-type. We infer that in wild-type mice, Aag excises damaged DNA bases to generate potentially toxic abasic sites that in turn generate highly toxic DNA strand breaks that trigger poly(ADP-ribose) polymerase (Parp) hyperactivation, cellular bioenergetics failure, and necrosis; indeed, steady-state levels of abasic sites and nuclear PAR polymers were significantly more elevated in wild-type vs. Aag[superscript −/−] liver after I/R. This increase in PAR polymers was accompanied by depletion of intracellular NAD and ATP levels plus the translocation and extracellular release of the high-mobility group box 1 (Hmgb1) nuclear protein, activating the sterile inflammatory response. We thus demonstrate the detrimental effects of Aag-initiated BER during I/R and sterile inflammation, and present a novel target for controlling I/R-induced injury.National Institutes of Health (U.S.) (Grant R01-CA055042)National Institutes of Health (U.S.) (Grant R01-CA149261)National Institutes of Health (U.S.) (Grant P30-ES02109)Ellison Medical Foundatio

    Endovascular thrombectomy and post-procedural headache

    Get PDF
    BACKGROUND: We investigated the prevalence of post-procedural headache in patients who have undergone thrombectomy for ischemic stroke, and correlated history of migraine with risk of peri-procedural complications. A total of 314 patients underwent thrombectomy at the Danish National Hospital from January 2012 to December 2014. Eligible subjects were phone-interviewed using a purpose-developed semi-structured questionnaire according to the International Classification of Headache Disorders 3, beta version criteria. FINDINGS: Among 96 eligible subjects, there was a significant decrease in migraine (p = 0.022) within the first 3 months after EVT compared to 1 year before treatment, which was further evident at interview time (on average 1.6 years after EVT, p = 0.013). A minority of patients experienced headaches for the first time within 3 months of their EVT (migraine 2, TTH 9), which persisted at interview time for subjects with migraine. Out of 12 subjects with peri-procedural complications, 2 had a history of migraine with aura. CONCLUSION: Thrombectomy leads to a significant decrease in previously known migraine, and new onset of headache in a small subset of patients. A history of migraine does not appear to predispose to peri-procedural complications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s10194-017-0719-0) contains supplementary material, which is available to authorized users

    Differential effects of anesthetics on resting state functional connectivity in the mouse

    Full text link
    Blood oxygen level-dependent (BOLD) functional MRI (fMRI) is a standard approach to examine resting state functional connectivity (RSFC), but fMRI in animal models is challenging. Recently, functional optical intrinsic signal imaging-which relies on the same hemodynamic signal underlying BOLD fMRI-has been developed as a complementary approach to assess RSFC in mice. Since it is difficult to ensure that an animal is in a truly resting state while awake, RSFC measurements under anesthesia remain an important approach. Therefore, we systematically examined measures of RSFC using non-invasive, widefield optical intrinsic signal imaging under five different anesthetics in male C57BL/6J mice. We find excellent seed-based, global, and interhemispheric connectivity using tribromoethanol (Avertin) and ketamine-xylazine, comparable to results in the literature including awake animals. Urethane anesthesia yielded intermediate results, while chloral hydrate and isoflurane were both associated with poor RSFC. Furthermore, we found a correspondence between the strength of RSFC and the power of low-frequency hemodynamic fluctuations. In conclusion, Avertin and ketamine-xylazine provide robust and reproducible measures of RSFC in mice, whereas chloral hydrate and isoflurane do not.R25 NS065743 - NINDS NIH HHS; KL2 TR002542 - NCATS NIH HHS; R00 AG042026 - NIA NIH HHS; K08 NS112601 - NINDS NIH HHS; P01 NS055104 - NINDS NIH HHS; R01 MH111359 - NIMH NIH HHS; R01 NS102969 - NINDS NIH HHS; R01 AA027097 - NIAAA NIH HHS; R01 NS091230 - NINDS NIH HHSPublished versio

    Questioning Glutamate Excitotoxicity in Acute Brain Damage: The Importance of Spreading Depolarization

    Get PDF
    Background Within 2 min of severe ischemia, spreading depolarization (SD) propagates like a wave through compromised gray matter of the higher brain. More SDs arise over hours in adjacent tissue, expanding the neuronal damage. This period represents a therapeutic window to inhibit SD and so reduce impending tissue injury. Yet most neuroscientists assume that the course of early brain injury can be explained by glutamate excitotoxicity, the concept that immediate glutamate release promotes early and downstream brain injury. There are many problems with glutamate release being the unseen culprit, the most practical being that the concept has yielded zero therapeutics over the past 30 years. But the basic science is also flawed, arising from dubious foundational observations beginning in the 1950s Methods Literature pertaining to excitotoxicity and to SD over the past 60 years is critiqued. Results Excitotoxicity theory centers on the immediate and excessive release of glutamate with resulting neuronal hyperexcitation. This instigates poststroke cascades with subsequent secondary neuronal injury. By contrast, SD theory argues that although SD evokes some brief glutamate release, acute neuronal damage and the subsequent cascade of injury to neurons are elicited by the metabolic stress of SD, not by excessive glutamate release. The challenge we present here is to find new clinical targets based on more informed basic science. This is motivated by the continuing failure by neuroscientists and by industry to develop drugs that can reduce brain injury following ischemic stroke, traumatic brain injury, or sudden cardiac arrest. One important step is to recognize that SD plays a central role in promoting early neuronal damage. We argue that uncovering the molecular biology of SD initiation and propagation is essential because ischemic neurons are usually not acutely injured unless SD propagates through them. The role of glutamate excitotoxicity theory and how it has shaped SD research is then addressed, followed by a critique of its fading relevance to the study of brain injury. Conclusions Spreading depolarizations better account for the acute neuronal injury arising from brain ischemia than does the early and excessive release of glutamate
    • 

    corecore